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Identification of Cadherin Tyrosine Residues
That Are Phosphorylated and Mediate Shc Association
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Abstract Previously, we reported association of the adaptor protein Shc through its SH2 domain with the
cytoplasmic domain of the adhesion molecule cadherin (Xu et al. [1997] J. Biol. Chem. 272:13463-13466). This
association was dependent on tyrosine phosphorylation of cadherin and could be modulated by extracellular Ca?* and
epidermal growth factor in intact cells. There are six tyrosine residues in the cytoplasmic domain of cadherin. To define
the tyrosine residue(s) that mediate Shc recognition, site-directed mutagenesis was employed to alter Tyr851 and/or
Tyr883 in cadherin, which both conform to a predicted Shc SH2 domain recognition sequence. Mutation of either
Tyr851 or Tyr883, but mostly the latter, decreased Src phosphorylation of cadherin and the binding of Shc to cadherin, as
determined by Sepharose bead binding and gel overlay assays. Of the two tyrosine residues, Tyr883 is the major Src
phosphorylation and Shc binding site. However, the double mutant (Tyr851, 883 Phe) exhibited less Shc association
than the single Tyr883 Phe mutant, suggesting a role for Tyr851 also. In addition, the binding of Shc to the cadherin
cytoplasmic domain was competitively inhibited by tyrosine phosphorylated peptides containing either Tyr851 or
Tyr883, but not by the corresponding non-phosphorylated peptides. Mutation of Tyr851 and/or Tyr883 did not alter the
capacity of the cytoplasmic domain of cadherin to bind B-catenin in vitro. However, Shc binding to cadherin did

negatively influence B-catenin binding to the same molecule. ). Cell. Biochem. 75:264-271, 1999.
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She, an adaptor protein with no known cata-
lytic activity, is a prominent substrate for pro-
tein tyrosine kinases and plays an important
role in linking receptor tyrosine kinase signal-
ing pathways to Ras activation [Bonfini et al.,
1996]. Shc is composed of an amino-terminal
phosphotyrosine binding (PTB) domain, a cen-
tral collagen homology domain that contains
three tyrosine phosphorylation sites and a car-
boxyterminal Src homology 2 (SH2) domain.
Both the SH2 and PTB domains bind to phos-
phorylated tyrosine residues, but in structur-
ally and mechanistically distinct ways. PTB
domains recognize residues aminoterminal to a
phosphotyrosine residue [van der Geer and Paw-
son, 1995], while SH2 domains bind to a phos-
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photyrosine residue based on the context of its
carboxyterminal residues [Songyang et al.,
1993]. While either of these phosphotyrosine
recognition motifs can mediate SHC associa-
tion with activated growth factor receptor tyro-
sine kinase, direct comparisons and mutagen-
esis data suggest that in many cases it is
primarily the PTB domain that mediates Shc
association with activated receptors [Prigent et
al.,1995; Dikic et al., 1995; He et al., 1995;
Craparo et al., 1995; Fournier et al., 1996; Pratt
et al., 1996; Isakoff et al., 1996; Yajnik et al.,
1996; Sakaguchi et al., 1998]. However, both
the PTB and SH2 domains of Shc have been
demonstrated to be essential for mitogenic sig-
nal transduction through the EGF receptor
[Gotoh et al., 1995; Sasaoka et al., 1996; Rick-
etts et al., 1996; O’Bryan et al., 1998; Sakagu-
chi et al., 1998]. Hence, the two domains are
non-redundant even within the context of one
mitogenic pathway.

The possibility that Shc mediates activation
of signaling pathways in addition to Ras has
been suggested [Bonfini et al., 1996, Gotoh et
al., 1997] and molecules that regulate cell adhe-
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sion have been implicated as Shc interacting
proteins. Evidence has been presented for Shc
interaction with integrin receptors [Mainiero et
al., 1995], though this interaction seems indi-
rect [Wary et al., 1996]. Previously, we discov-
ered through a two-hybrid screen in yeast that
the cytoplasmic domain of cadherin interacted
with the SH2 domain of Shc [Xu et al., 1997].
This interaction was also detected in mamma-
lian cells and required tyrosine phosphoryla-
tion of cadherin, as evidenced by potentiation of
the association in cells treated with the phospho-
tyrosine phosphatase inhibitor pervanadate. In
vitro studies demonstrated that the interaction
was direct and required Src-mediated phosphor-
ylation of the cadherin cytoplasmic domain.

Cadherins are cell surface glycoproteins
which mediate homophilic cell-cell adhesion in
a calcium-dependent manner [Takeichi, 1991].
The cytoplasmic domains of classic cadherins
are highly conserved and linked to actin fila-
ments through the catenin family of proteins.
Crosstalk between this adhesion molecule and
the EGF receptor tyrosine kinase is suggested
by several facts. B-catenin is an EGF receptor
tyrosine phosphorylation substrate which medi-
ates interaction of this receptor with the cad-
herin-catenin complex [Hoschvetzky et al.,
1994]. As mentioned above, Shc, an EGF recep-
tor tyrosine kinase substrate, interacts with
both the EGF receptor and cadherin [Xu et al.,
1997]. The extent of cadherin tyrosine phosphor-
ylation in vivo is uncertain; however, tyrosine
phosphorylation of this adhesion molecule has
been reported in v-Src transformed cells
[Hamaguchi et al., 1993; Behrens et al., 1993;
Brady-Kalnay et al., 1998], in cells treated with
the phosphotyrosine phosphatase inhibitor per-
vanadate [Brady-Kalnay et al., 1995; Xu et al.,
1997; Soler et al., 1998], and in endothelial cells
exposed to vascular endothelial growth factor
[Esser et al., 1998]. Complicating the phospho-
tyrosine status of cadherin may be the associa-
tion of a phosphotyrosine phosphatase with cad-
herin or the cadherin-catenin complex [Brady-
Kalnay et al., 1995, 1998; Balsamo et al., 1996,
Kypta et al., 1996, Balsamo et al., 1998]. Biologi-
cal data showing that EGF modulates cadherin
interaction with the actin cytoskeleton [Hazan
and Norton, 1998] and that pervanadate de-
creases cadherin-dependent cell:cell adhesion
[Ozawa and Kemler, 1998] have been pre-
sented.

To identify the She SH2 domain binding site(s)
in the cytoplasmic domain of cadherin, site-
directed mutagenesis and peptide competition
experiments have been employed to identify
the cadherin tyrosine residues responsible for
She binding. The results show that Tyr883 of
Shc is the major Src phosphorylation site and
the major Shc binding site, while Tyr851 also
contributes to both Src phosphorylation and
Shc binding.

MATERIALS AND METHODS
Materials

Glutathione-S-transferase (GST) and pan-
cadherin antibodies were purchased from Santa
Cruz (Santa Cruz, CA), while phosphotyrosine
and B-catenin antibodies were purchased from
Transduction Laboratories. The purification of
recombinant She from baculovirus-infected in-
sect cells and the preparation of She antiserum
have been described previously [Xu et al., 1997].
Antibody bound to nitrocellulose was detected
with horseradish peroxidase coupled to Protein
A or anti-mouse IgG and enhanced chemi-
luminescence. Cadherin peptides containing
tyrosine/phosphotyrosine residues 851 or 883
were synthesized by Quality Controlled Bio-
chemicals, Inc., with the following sequences:
851 peptide APPYDSLLFD; 851P peptide
APP(p)YDSLLFD; 883 peptide DQDYDYLND;
and 883P peptide DQD(p)YDYLND; and a con-
trol tyrosine phosphorylated peptide: DND-
(p)YITPLPDPK, derived from the sequence sur-
rounding Tyr 1021 of the platelet-derived
growth factor B receptor.

Plasmid Construction

A Bam HI/Not I DNA fragment, encoding the
cytoplasmic domain of mouse N-cadherin encod-
ing residues 792 to 906 was isolated in yeast
two-hybrid screen [Xu et al., 1997] and subse-
quently cloned into the Bam HI/Not I site of
pGEX-5X-1 (Pharmacia) as the GST cadherin
C-terminal fusion protein (pGEX-5X-1 C-Cad).

Site-Directed Mutagenesis

Mutagenesis was carried out in pGEX-5X-1
C-Cad vector according to instruction manual
using ExSite PCR-based site-directed mutagen-
esis kit (Stratagene). The sequences of PCR
mutagenesis oligos are as follow: Y851F sense:
5'TTG ACT CCC TCT TAG TCT TTG ACT AC
3’; Y851F anti-sense: 5’'ACG GTG GCG CCG
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TGG GGT CGT TGT C 3'; Y883F sense: 5'TTG
ACT ACC TGA ATG ACT GGG GAC CC 3/
Y883F anti-sense: 5'AGT CCT GGT CCC CAC
CGC TAC TGG A 3'. The resulting mutations
were confirmed by direct DNA sequencing.
The Y851F, Y883F and the double mutant
Y851FY883F mutations were introduced into
both the pGEX-5X-1 C-Cad and pRK5 Myc C-
Cad vectors.

In Vitro Src Kinase Assay

Wild-type or mutant GST-cadherin coupled
to glutathione Sepharose 4B beads (Pharma-
cia) were incubated for 45 min with purified
c-Src (Upstate Biotechnology Inc.) at room tem-
perature in Src kinase buffer (20 mM Tris, pH
7.6, 40 mM MgCl2, 2 mM MnCI2 and 0.5 mM
EGTA) in the presence of 10 mM ATP and 1 mM
sodium orthovanadate. Following this incuba-
tion, the Sepharose beads were washed three
times with phosphate buffered saline contain-
ing 1% Triton X-100 and 1 mM NazVO, (PBSTV
buffer).

Sepharose Binding Assay

GST-cadherin fusion proteins were expressed
using the pGEX-51-1 vector (Pharmacia) and
purified from E. coli according to the manufac-
turer’s instructions. The fusion proteins were
coupled to glutathione Sepharose 4B beads and
tyrosine phosphorylated using purified c-Src
kinase as described above. After washing with
PBSTYV buffer, the beads were incubated with
recombinant Shec in PBSTV buffer or A-431 cell
lysate in TGH buffer (1% Triton X-100, 10%
glycerol, 100 mM NaCl, 50 mM Hepes, pH 7.2)
supplemented with 10 ng/ml leupeptin, 10 ng/ml
aprotinin, 544 pM iodoacetamide, 1 mM phenyl-
methylsulfonyl fluoride, and 1 mM NazVO,
(TGHIV buffer). After incubation and washing
with PBSTV or TGHIV buffer, bound proteins
were analyzed by SDS polyacrylamide gel elec-
trophoresis (SDS PAGE) and Western blotting
with She antibody.

Gel Overlay Assay

Tyrosine phosphorylated GST-cadherin fu-
sion proteins were subjected to SDS PAGE and
transferred to nitrocellulose filter. The filter-
bound protein was denatured in 6 M guanidin-
ium HCI and renatured by serial dilution of
guanidinium HCI from 3 M to a final concentra-
tion of 0.185 M. The filter was then incubated

with recombinant Shc in the presence or ab-
sence of cadherin peptides. After washing five
times with TBST buffer (50 mM Tris-HC1, pH
7.6, 150 mM NaCl, 1% Triton X-100), bound
protein was detected by Western blot with anti-
She.

RESULTS AND DISCUSSION
Peptide Competition Assay

In a previous study [Xu et al., 1997], we
demonstrated that the binding of Shc to the
cytoplasmic domain of cadherin is dependent
on the tyrosine phosphorylation of cadherin in
vivo and in vitro. Of the six tyrosine residues in
the cadherin cytoplasmic domain, the residues
carboxyterminal to Tyr851 and Tyr883 form
consensus binding sites for the SH2 domain of
Shc as deduced from peptide library studies
[Songyang et al., 1994]. To determine whether
these tyrosine residues do mediate Shc binding,
peptides containing sequences flanking Tyr851
and Tyr883 were synthesized to contain either
tyrosine or phosphotyrosine. The peptides were
used in competition assay to measure Shc bind-
ing to the cytoplasmic domain of tyrosine phos-
phorylated cadherin. In these experiments, pu-
rified Src was employed to phosphorylate the
cytoplasmic domain of cadherin. While it is not
clear which tyrosine kinase(s) actually phos-
phorylates cadherin in vivo, cadherin is tyro-
sine phosphorylated in v-src transformed cells
[Brady-Kalnay et al., 1998; Hamaguchi et al.,
1993; Behrens et al., 1993]. Also, the presence
of Src family tyrosine kinases in cadherin-
containing adherins junctions has been re-
ported [Tsukita et al., 1991].

The results of Sepharose bead binding assay
and a gel overlay assay are shown in Figure 1.
The Sepharose binding assay (Fig. 1A) shows
that the presence of the 851 or 883 non-phospho-
tyrosine peptides have no effect on the binding
of Shc to the immobilized tyrosine phosphory-
lated GST cadherin fusion protein. However,
the presence of the phosphotyrosine-containing
851P or 883P peptides decreased the binding of
Shc to cadherin approximately four-fold. When
equimolar amounts of the 851P and 883P pep-
tides were combined and assayed, Shc associa-
tion was decreased more than with either pep-
tide alone. This decrease was less than additive,
however. The observed inhibition by the 851P
and 883P peptides was not due to the presence
of just a phosphotyrosine residue, as an irrel-
evant control phosphotyrosine peptide (control
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pY), representing the sequence around Tyr1021
in the PDGFB receptor, did not decrease the
binding of Shc to cadherin. In the absence of Src
phosphorylation of the GST-cadherin molecule,
no Shc binding was detectable, as expected
based on previous data [Xu et al. 1997].

The result of the gel overlay assay, as shown
in Panel B, is consistent with that of Sepharose
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Fig. 1. Capacity of phosphotyrosine peptides to compete with
Shc for cadherin binding. A: Peptide competition in a Sepharose
binding assay. GST or GST-cadherin proteins were immobilized
on Sepharose beads and incubated with purified Src. After
washing, the beads were incubated for 2 h with recombinant
Shc (2 pg/ml) in the presence or absence of the indicated
peptide (100 pg/ml). After incubation, the Sepharose beads
were washed and bound proteins were subjected to SDS-PAGE
and Western blotting using either anti-Shc or anti-GST. B:
Peptide competition in a gel overlay experiment. After incuba-
tion with Src, tyrosine phosphorylated GST-cadherin fusion
proteins were subjected to SDS-PAGE and transferred to a
nitrocellulose filter. Bound proteins were denatured with 6M
guanidinium hydrochloride and renatured by serial dilution.
The filter was then incubated with recombinant Shc (1.6 pg/ml)
in the absence or presence of the indicated peptides (100
pg/ml). After incubation for 16 h, the filter was washed with
TBST buffer and bound proteins were detected by a Western
blotting with either anti-Shc or anti-cadherin.

binding assay, i.e. only phosphotyrosine-contain-
ing 851P and 883P peptides competed for the
binding of recombinant Shc to the tyrosine phos-
phorylated GST-cadherin fusion protein. In this
experiment here was a four-fold decrease in She
binding to GST-cadherin when either the 851P
or 883P peptide was present.

Site-Directed Mutagenesis Analysis

To confirm the importance of Tyr851 and
Tyr883 in this interaction, site-directed muta-
genesis of these residues was employed to pro-
duce single or double Tyr — Phe mutant cadher-
ins. The Wild-type and mutant cadherin
cytoplasmic domains were then expressed as
GST fusion proteins and subjected to a Src
kinase assay. The results, shown in Figure 2
(top panel), indicate that Tyr883 is the major
tyrosine phosphorylation site for Src as the
Y883F single mutation dramatically decreased
the capacity of cadherin to function as a sub-
strate for Src. The data also suggest that Tyr851
is a minor tyrosine phosphorylation site for Src.
The Y851F mutant showed a slight decrease in
tyrosine phosphorylation, but when the double
mutant (Y851, 883F) was assayed, there was a
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Fig. 2. Influence of mutagenesis of Tyr851 and Tyr883 on
tyrosine phosphorylation of cadherin and Shc association. GST-
cadherin fusion proteins (Wild-type or mutants) were immobi-
lized on Sepharose beads and incubated with Src kinase. The
beads were then washed and incubated for 30 min with recom-
binant Shc protein (2.4 pg/ml). After washing, bound proteins
were subjected to SDS-PAGE and western blotting using anti-
Shc, anti-PY or anti-cadherin as indicated.
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further decrease in tyrosine phosphorylation
compared with the Y883F mutant.

Since the capacity of Shc to interact with
cadherin is dependent on the tyrosine phosphor-
ylation of cadherin [Xu et al. 1997], cadherin
mutants were assayed for Shc association using
GST-cadherin immobilized on Sepharose beads
(Fig. 2, middle panel). The binding of Shc to
cadherin in this assay correlates well with the
tyrosine phosphorylation of different cadherin
mutants. Compared to Shc association with
wild-type GST-cadherin, mutagenesis of Tyr883
significantly decreased Shc association, while
mutagenesis of Tyr851 alone had a minor influ-
ence on Shc association. However, Tyr851 does
seem to contribute to Shc binding, as the Y851,
883F double mutant bound Shc to a lesser ex-
tent than the Y883F mutant. The lower panel
in Figure 2 verifies that there was a similar
amount of GST-cadherin in each sample. Since
neither Tyr851 nor Tyr 883 is preceded by resi-
dues that constitute a consensus site for PTB
domains, it seems likely that the observed Shc
association with tyrosine phosphorylated cad-
herin in this system is due to the SH2 domain of
Shc and not the PTB domain.

Binding of Shc and B-Catenin to Cadherin

It is well known that the cytoplasmic domain
of cadherin is linked to actin filaments through
B-catenin and other proteins and that B-catenin
is the major regulatory component of cadherin-
mediated cell-cell adhesion. The Tyr to Phe
mutations at residues 851 and 883 that de-
crease the capacity of cadherin to act as a Src
substrate and to bind Shc are close to the
B-catenin binding site on cadherin located at
residues 832-862 in E-cadherin [Stapport and
Kemler, 1994]. Therefore, the influence of these
mutations on the binding of B-catenin to cad-
herin was tested (Fig. 3). Cell lysates contain-
ing B-catenin were tested for their capacity to
associate with immobilized GST-cadherins. Af-
ter incubation with lysate and washing, the
GST-cadherins were probed with anti-B-catenin.
The results show that Wild-type, Y883F, and
Y851,883F GST-cadherins associate with
B-catenin to a similar extent. In this assay,
when the GST-cadherin was not prephosphory-
lated, B-catenin association with cadherin was
not affected. These data indicate that neither
Tyr851 nor Tyr883 is essential for B-catenin
binding to cadherin.

Anti-p-Catenin

-

1 2 3 4 5 6
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Fig. 3. The binding of B-catenin to the cytoplasmic domain of
Wild-type and mutant cadherin. GST-cadherin cytoplasmic do-
main fusion proteins (Wild-type or tyrosine mutants, as indi-
cated) were immobilized on Sepharose beads and incubated
with or without purified Src kinase. After washing, the beads
were incubated for 2 h with 1 mg A-431 cell lysate, as a source
of B-catenin. The beads were then washed and bound proteins
were subjected to SDS-PAGE and Western blotting using anti-B-
catenin, anti-PY or anti-cadherin as indicated.

The data in Figure 3 do not allow a conclu-
sion as to whether Shc binding to cadherin may
influence B-catenin binding to the same mol-
ecule. Therefore, a competition experiment was
performed to determine whether the pre-bind-
ing of Shc to cadherin interferes with the bind-
ing of B-catenin. Tyrosine phosphorylated GST-
cadherin fusion protein was incubated with an
A-431 cell lysate, as a source of B-catenin, in the
absence or presence of increasing amounts of
recombinant Shc. Thereafter the amount of
B-catenin associated with cadherin was as-
sayed. As the data in Figure 4 demonstrate,
with increased concentrations of recombinant
Shc there was an increased amount of Shc
bound to cadherin and a decreased amount of
B-catenin associated with cadherin. These re-
sults suggest that the Shc and B-catenin bind-
ing sites on cadherin may overlap, such that
Shc binding to cadherin either provides a steric
hindrance to B-catenin binding or alters the
conformation of cadherin such that B-catenin is
not recognized. While an interaction between
Shc and B-catenin (not involving cadherin) has
not been reported, such an interaction might
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Fig. 4. The competitive binding of Shc and B-catenin to the
cytoplasmic domain of cadherin. GST-cadherin cytoplasmic
domain fusion protein was immobilized on Sepharose beads
and incubated with or without purified Src kinase as indicated.
The beads were then incubated for 2 h with A-431 cell lysate (1
mg) in the absence or presence of increasing concentrations of
recombinant Shc. After incubation and washing, bound proteins
were subjected to SDS-PAGE and Western blotting using anti-
Shc, anti-B-catenin, anti-PY, or anti-cadherin as indicated.

account for the observed decrease in -catenin
binding to cadherin when increased recombi-
nant Shc was added to the lysates. However, we
have been unable to detect a She:B-catenin in-
teraction in these lysates by co-precipitation
assays (data not shown).

Analysis of phosphotyrosine peptide libraries
with the SH2 domain of Shc lead to the conclu-
sion that a consensus recognition site for this
SH2 domain would contain phosphotyrosine fol-
lowed at the +1 position by a hydrophobic or
negatively charged residue and either Ile or
Leu at the +3 position [Songyang et al., 1994].
The data predicted no selectivity would exist at
the +2 position and the strongest determinant
in the association would be the residue at the
+3 position. The high resolution structure of
the Shc SH2 domain has been determined by
NMR [Zhou et al., 1995] and X-ray crystallogra-
phy [Mikol et al., 1995]. In the former case the
SH2 structure was determined in complex with
a phosphotyrosine-containing peptide derived

from the chain of the T cell receptor. This pep-
tide sequence contained the sequence pTyr
GInGlyLeu, which conforms at the +3 position
to the consensus sequence developed with pep-
tide libraries. In the cadherin cytoplasmic do-
main, we have identified Tyr883 and to a lesser
extent Tyr851 as recognition sites for the SH2
domain of She. The sequence at residue 883 is
pTyrAspTyrLeu, which conforms well to the
She SH2 consensus sequence at both the +1
and +3 positions. All cadherins have Leu at the
+3 position and, with a few exceptions, all have
Asp at the +1 position. In two cases. XB/U-
cadherin and EP-cadherin, there is Asn at the
+1 position, which is comparable to the se-
quence in the T cell receptor chain. Tyr851 in
cadherin is followed by well conserved Asp and
Leu residues at the +1 position and the +3
position, respectively, which conforms well to
the predicted recognition sequence for the SH2
domain of Shc. That Tyr883 is the major Shc
association site compared to Tyr 851 reflects its
higher selectivity as a Src phosphorylation site.
Unlike Tyr851, Tyr883 in cadherins is preceded
by acidic residues at the -1 and -3 positions,
which often denote tyrosine kinase recognition
sites [Songyang et al., 1995].

While the biologic significance of Shc interac-
tion with cadherin remains uncertain, use of
the cadherin mutants described herein may
provide a valuable approach to address this
issue.
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